Critical Global Asymptotics in Higher-order Semilinear Parabolic Equations

نویسنده

  • VICTOR A. GALAKTIONOV
چکیده

We consider a higher-order semilinear parabolic equationut =−(−∆)mu−g(x,u) in RN×R+, m>1. The nonlinear term is homogeneous: g(x,su)≡ |s|P−1sg(x,u) and g(sx,u) ≡ |s|Qg(x,u) for any s ∈ R, with exponents P > 1, and Q > −2m. We also assume that g satisfies necessary coercivity and monotonicity conditions for global existence of solutions with sufficiently small initial data. The equation is invariant under a group of scaling transformations. We show that there exists a critical exponent P = 1+(2m+Q)/N such that the asymptotic behavior as t →∞ of a class of global small solutions is not group-invariant and is given by a logarithmic perturbation of the fundamental solution b(x,t)= t−N/2mf(xt−1/2m) of the parabolic operator ∂/∂t+(−∆)m, so that for t 1,u(x,t)=C0(lnt)−N/(2m+Q)[b(x,t) +o(1)], where C0 is a constant depending on m, N, and Q only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Life Span of Blow-up Solutions for Higher-order Semilinear Parabolic Equations

In this article, we study the higher-order semilinear parabolic equation ut + (−∆)u = |u|, (t, x) ∈ R+ × R , u(0, x) = u0(x), x ∈ R . Using the test function method, we derive the blow-up critical exponent. And then based on integral inequalities, we estimate the life span of blow-up solutions.

متن کامل

Global existence versus blow up for some models of interacting particles Piotr

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst–Planck and the Debye–Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and o...

متن کامل

Global existence versus blow up for some models of interacting particles

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst–Planck and the Debye–Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and o...

متن کامل

Unboundedness of classical global solutions of parabolic equations with forcing terms

Semilinear parabolic equations with forcing terms are discussed, and sufficient conditions for every classical global solution of boundary value problems to be unbounded on a cylindrical domain in R. The approach used is to reduce the multi-dimensional problems to one-dimensional problems for first-order ordinary differential inequalities.

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002